\square

B. TECH
 (SEM III) THEORY EXAMINATION 2020-21 DATA STRUCTURES

Total Marks: 100
Time: 3 Hours
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

Q no.	Question	Marks	CO
a.	Define Time-Space trade-off.	2	1
b.	Differentiate Array and Linked list.	2	1
c.	Explain Tail Recursion with suitable example.	2	2
d.	Write the full and empty condition for a circular queue data structure.	2	2
e.	Examine the minimum number of interchanges needed to convert the array $90,20,41,18,13,11,3,6,8,12,7,71,99$ into a maximum heap.	2	3
f.	Differentiate sequential search and binary search.	2	3
g .	Compute the Transitive closure of following graph.	2	4
h.	Write short notes on adjacency multi list representation a Graph.	2	4
i.	What is the importance of threaded binary tree?	2	5
j.	Write short notes on min heap.	2	5

SECTION B

2. Attempt any three of the (hllowing:

Q no.	V0 Question	Marks	CO
a.	Consider a multal eimensional Array $A[90$] [30] [40] with base address starts at $1000 \sqrt{\text { Calculate the address of } \mathrm{A}[10]}$ [20] [30] in row major order and Column major order. Assume the first element is stored at $A[2][2][2]$ and each element take 2 byte.	10	1
b.	Evaluate the following postfix expression using stack. $239 *+23 \wedge-62 /+$, show the contents of each and every steps. also find the equivalent prefix form of above expression. Where ${ }^{\wedge}$ is an exponent operator.	10	2
c.	Explain any three commonly used hash function with the suitable example? A hash function H defined as $\mathrm{H}(\mathrm{key})=\mathrm{key} \% 7$, with linear probing, is used to insert the key $37,38,72,48,98,11,66$ into a table indexed from 0 to 6 . what will be the location of key 11 ? Justify your answer, also count the total number of collisions in this probing.	10	3
d.	Write an algorithm for Breadth First search (BFS) and explain with the help of suitable example.	10	4
e.	If the in order of a binary tree is B,I,D,A,C,G,E,H,F and its post order is I,D,B,G,C H,F,E,A then draw a corresponding binary tree with neat and clear steps from above assumption.	10	5

Roll No: \square

SECTION C

3. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Consider the two dimensional lower triangular matrix (LTM) of order N ,Obtain the formula for address calculation in the address of row major and column major order for location LTM[j][k], if base address is BA and space occupied by each element is w byte.	10	1
b.	Write a C program to insert a node at $\mathrm{k}^{\text {th }}$ position in single linked list.	10	1

4. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Convert the following infix expression to reverse polish notation expression using stack. $x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$	10	2
b.	Write a C program to implement stack using single linked list.	10	2

5. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Write an algorithm for merge sort and apply on following elements $45,32,65,76,23,12,54,67,22,87$.	10	3
b.	Write a C program for Index Sequential Search.	10	3

6. Attempt any one part of (he following:

Q no.	Question	Marks	CO
a.	Describe Prim`s adgorithm and find the cost of minimum spanning tree \\ using Prim`s Adgorithm	10	4
b.	Apply the Floyd warshall's algorithm in above mentioned graph (i.e. in Q.no 6a)	10	4

7. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Write Short notes of following (a) Extended Binary Trees (c) Threaded Binary Tree. (b) Complete Binary Tree	10	5
b.	Insert the following sequence of elements into an AVL tree, starting with empty tree $71,41,91,56,60,30,40,80,50,55$ also find the minimum array size to represent this tree.	10	5

